SenticNet 2
نویسندگان
چکیده
Web 2.0 has changed the ways people communicate, collaborate, and express their opinions and sentiments. But despite social data on the Web being perfectly suitable for human consumption, they remain hardly accessible to machines. To bridge the cognitive and affective gap between word-level natural language data and the concept-level sentiments conveyed by them, we developed SenticNet 2, a publicly available semantic and affective resource for opinion mining and sentiment analysis. SenticNet 2 is built by means of sentic computing, a new paradigm that exploits both AI and Semantic Web techniques to better recognize, interpret, and process natural language opinions. By providing the semantics and sentics (that is, the cognitive and affective information) associated with over 14,000 concepts, SenticNet 2 represents one of the most comprehensive semantic resources for the development of affect-sensitive applications in fields such as social data mining, multimodal affective HCI, and social media marketing.
منابع مشابه
SenticNet 3: A Common and Common-Sense Knowledge Base for Cognition-Driven Sentiment Analysis
SenticNet is a publicly available semantic and affective resource for concept-level sentiment analysis. Rather than using graph-mining and dimensionality-reduction techniques, SenticNet 3 makes use of ‘energy flows’ to connect various parts of extended common and common-sense knowledge representations to one another. SenticNet 3 models nuanced semantics and sentics (that is, the conceptual and ...
متن کاملSenticNet 4: A Semantic Resource for Sentiment Analysis Based on Conceptual Primitives
An important difference between traditional AI systems and human intelligence is the human ability to harness commonsense knowledge gleaned from a lifetime of learning and experience to make informed decisions. This allows humans to adapt easily to novel situations where AI fails catastrophically due to a lack of situation-specific rules and generalization capabilities. Commonsense knowledge al...
متن کاملSenticNet: A Publicly Available Semantic Resource for Opinion Mining
Today millions of web-users express their opinions about many topics through blogs, wikis, fora, chats and social networks. For sectors such as e-commerce and e-tourism, it is very useful to automatically analyze the huge amount of social information available on the Web, but the extremely unstructured nature of these contents makes it a difficult task. SenticNet is a publicly available resourc...
متن کاملSenticNet 4
An important difference between traditional AI systems and human intelligence is the human ability to harness commonsense knowledge gleaned from a lifetime of learning and experience to make informed decisions. This allows humans to adapt easily to novel situations where AI fails catastrophically due to a lack of situation-specific rules and generalization capabilities. Commonsense knowledge al...
متن کاملEnriching semantic knowledge bases for opinion mining in big data applications
This paper presents a novel method for contextualizing and enriching large semantic knowledge bases for opinion mining with a focus on Web intelligence platforms and other high-throughput big data applications. The method is not only applicable to traditional sentiment lexicons, but also to more comprehensive, multi-dimensional affective resources such as SenticNet. It comprises the following s...
متن کامل